Exercise 10.1.3

Show that the function $y(x)$ defined by Eq. (10.26) satisfies the initial-value problem defined by Eq. (10.24) and its initial conditions $y(0)=y^{\prime}(0)=0$.

Solution

Eq. (10.26) in the text is

$$
\begin{equation*}
y(x)=\int_{0}^{x} \sin (x-t) f(t) d t \tag{10.26}
\end{equation*}
$$

The aim here is to show that it satisfies

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+y=f(x), \quad y(0)=0, y^{\prime}(0)=0 \tag{10.24}
\end{equation*}
$$

Differentiate $y(x)$ with respect to x by using the Leibnitz rule.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} \int_{0}^{x} \sin (x-t) f(t) d t \\
& =\int_{0}^{x} \frac{\partial}{\partial x} \sin (x-t) f(t) d t+\sin (x-x) f(x) \cdot 1-\sin (x-0) f(0) \cdot 0 \\
& =\int_{0}^{x} \cos (x-t) f(t) d t
\end{aligned}
$$

Differentiate $d y / d x$ with respect to x once more.

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x} \int_{0}^{x} \cos (x-t) f(t) d t \\
& =\int_{0}^{x} \frac{\partial}{\partial x} \cos (x-t) f(t) d t+\cos (x-x) f(x) \cdot 1-\cos (x-0) f(0) \cdot 0 \\
& =\int_{0}^{x}[-\sin (x-t)] f(t) d t+f(x) \\
& =-\int_{0}^{x} \sin (x-t) f(t) d t+f(x) \\
& =-y(x)+f(x)
\end{aligned}
$$

Therefore, the integral solution satisfies the ODE. Finally, check that the initial conditions are satisfied.

$$
\begin{aligned}
y(0) & =\int_{0}^{0} \sin (0-t) f(t) d t
\end{aligned}=0
$$

